martes, 12 de marzo de 2019

universo

¿Qué es el Universo?

El Universo es todo, sin excepciones. Materia, energía, espacio y tiempo, todo lo que existe forma parte del Universo.
También se le llama Cosmos. Las ciencias que lo estudian son varias, en especial dos: la astronomía y la cosmología.
El Universo es muy grande, pero quizás no infinito. Si lo fuera, habría infinita materia en infinitas estrellas, y no es así. Al contrario: en cuanto a la materia es, sobre todo, espacio vacío. Hay quien incluso afirma que el Universo en el que vivimos no es real, que es un holograma.
El Universo conocido contiene galaxias, cúmulos de galaxias y estructuras de mayor tamaño llamadas supercúmulos, además de materia intergaláctica. Todavía no sabemos con exactitud su magnitud, a pesar de la avanzada tecnología disponible en la actualidad.
La materia no se distribuye de manera uniforme, sino que se concentra en lugares concretos: galaxias, estrellas, planetas... Sin embargo, se supone que el 90% de lo que existe es una masa oscura, que no podemos observar. Por cada millón de átomos de hidrógeno los 10 elementos más abundantes son:

El Cosmos tiene al menos cuatro dimensiones conocidas: las tres del espacio (largo, alto, ancho) y una de tiempo. Se mantiene unido y en continuo movimiento gracias a una fuerza dominante, la gravedad.

Nuestro lugar en el Universo

Nuestro mundo, la Tierra, es minúsculo comparado con el firmamento Formamos parte del Sistema Solar, perdido en un brazo de la Vía Láctea, una galaxia que tiene 100.000 millones de estrellas, pero sólo es una entre los centenares de miles de millones de galaxias que forman el Universo.

la teoría del big bang

Dice que hace unos 13.700 millones de años la materia tenía una densidad y una temperatura infinitas. Hubo una explosión violenta y, desde entonces, el universo va perdiendo densidad y temperatura.
El Big Bang es una singularidad, una excepción que no pueden explicar las leyes de la física. Podemos saber qué pasó desde el primer instante, pero el momento y tamaño cero todavía no tienen explicación científica.
Mientras no se consiga desvelar este misterio, los científicos no podrán explicar con total seguridad qué es el Universo.

¿Cómo se formó el Universo?

Edwin Hubble descubrió que el Universo se expande. La teoría de la relatividad general de Albert Einstein ya lo había previsto.
¿Qué había antes del Universo? La pregunta es del todo incorrecta si admitimos que el tiempo también empezó a contar con el Universo. Si no existía el tiempo, tampoco había un "antes".
Los científicos intentan explicar el origen del Universo con diversas teorías, apoyadas en observaciones y unos cálculos matemáticos que resulten coherentes. Las más aceptadas son la del Big Bang y la teoría Inflacionaria, que se complementan entre sí.


¿Qué es un agujero negro?
Para entender lo que es un agujero negro empecemos por una estrella como el Sol, que tiene un diámetro de 1.390.000 kilómetros y una masa 330.000 veces superior a la de la Tierra.
Teniendo en cuenta esa masa y la distancia de la superficie al centro se demuestra que cualquier objeto colocado sobre la superficie del Sol estaría sometido a una atracción gravitatoria unas 28 veces superior a la gravedad terrestre en la superficie del planeta.
Agujero negro
Agujeros negros, ¿cómo podemos observarlos?Una estrella corriente conserva su tamaño normal gracias al equilibrio entre una altísimo temperatura central, que tiende a expandir la sustancia estelar, y la gigantesca atracción gravitatoria, que tiende a contraerla y estrujarla.
Si en un momento dado la temperatura interna desciende, la gravitación se hará dueña de la situación. La estrella comienza a contraerse y a lo largo de ese proceso la estructura atómica del interior se desintegra. En lugar de átomos habrá ahora electrones, protones y neutrones sueltos. La estrella sigue contrayéndose hasta el momento en que la repulsión mutua de los electrones contrarresta cualquier contracción ulterior.
La estrella es ahora una «enana blanca». Si una estrella como el Sol sufriera este colapso que conduce al estado de enana blanca, toda su masa quedaría reducida a una esfera de unos 16.000 kilómetros de diámetro, y su gravedad superficial (con la misma masa, pero a una distancia mucho menor del centro) sería 210.000 veces superior a la de la Tierra.
La luz se pierde en un agujero negro
En determinadas condiciones la atracción gravitatoria se hace demasiado fuerte para ser contrarrestada por la repulsión electrónica. La estrella se contrae de nuevo, obligando a los electrones y protones a combinarse para formar neutrones y forzando también a estos últimos a apelotonarse en estrecho contacto. La estructura neutrónica contrarresta entonces cualquier ulterior contracción y lo que tenemos es una «estrella de neutrones», que podría albergar toda la masa de nuestro sol en una esfera de sólo 16 kilómetros de diámetro. La gravedad superficial sería 210.000.000.000 veces superior a la que tenemos en la Tierra.
Agujero Negro
En ciertas condiciones, la gravitación puede superar incluso la resistencia de la estructura neurótica. En ese caso ya no hay nada que pueda oponerse al colapso. La estrella puede contraerse hasta un volumen cero y la gravedad superficial aumentar hacia el infinito.
Según la teoría de la relatividad, la luz emitida por una estrella pierde algo de su energía al avanzar contra el campo gravitatorio de la estrella. Cuanto más intenso es el campo, tanto mayor es la pérdida de energía, lo cual ha sido comprobado experimentalmente en el espacio y en el laboratorio.
La luz emitida por una estrella ordinaria como el Sol pierde muy poca energía. La emitida por una enana blanca, algo más; y la emitida por una estrella de neutrones aún más. A lo largo del proceso de colapso de la estrella de neutrones llega un momento en que la luz que emana de la superficie pierde toda su energía y no puede escapar.
Agujero negro devorando estrellas
Un objeto sometido a una compresión mayor que la de las estrellas de neutrones tendría un campo gravitatorio tan intenso, que cualquier cosa que se aproximara a él quedaría atrapada y no podría volver a salir. Es como si el objeto atrapado hubiera caído en un agujero infinitamente hondo y no cesase nunca de caer. Y como ni siquiera la luz puede escapar, el objeto comprimido será negro. Literalmente, un «agujero negro».


Evolución de las Estrellas

Las estrellas evolucionan durante millones de años. En realidad, nunca dejan de evolucionar y cambiar, desde su nacimiento hasta su muerte.
Nacen cuando se acumula una gran cantidad de materia en un lugar del espacio. El material se comprime y se calienta hasta que empieza una reacción nuclear, que consume la materia, convirtiéndola en energía. Las estrellas pequeñas la gastan lentamente y duran más que las grandes.
Las teorías sobre la evolución de las estrellas se basan en pruebas obtenidas de estudios de los espectros relacionados con la luminosidad. Las observaciones demuestran que muchas estrellas se pueden clasificar en una secuencia regular en la que las más brillantes son las más calientes y las más pequeñas, las más frías.
Esta serie de estrellas forma una banda conocida como la secuencia principal en el diagrama temperatura-luminosidad conocido como diagrama Hertzsprung-Russell. Otros grupos de estrellas que aparecen en el diagrama incluyen a las estrellas gigantes y enanas antes mencionadas.

La vida de una estrella

Fondos de pantalla para iPhone de la semana | | Hablemos de AppleEl ciclo de vida de una estrella empieza como una gran masa de gas relativamente fría. La contracción del gas eleva la temperatura hasta que el interior de la estrella alcanza 1.000.000 °C. En este punto tienen lugar reacciones nucleares, cuyo resultado es que los núcleos de los átomos de hidrógeno se combinan con los de deuterio para formar núcleos de helio. Esta reacción libera grandes cantidades de energía, y se detiene la contracción de la estrella. Por un tiempo parece que se estabiliza.
Pero cuando finaliza la liberación de energía, la contracción comienza de nuevo y la temperatura de la estrella vuelve a aumentar. En un momento dado empieza una reacción entre el hidrógeno, el litio y otros metales ligeros presentes en el cuerpo de la estrella. De nuevo se libera energía y la contracción se detiene.
Cuando el litio y otros materiales ligeros se consumen, la contracción se reanuda y la estrella entra en la etapa final del desarrollo en la cual el hidrógeno se transforma en helio a temperaturas muy altas gracias a la acción catalítica del carbono y el nitrógeno. Esta reacción termonuclear es característica de la secuencia principal de estrellas y continúa hasta que se consume todo el hidrógeno que hay.
La estrella se convierte en una gigante roja y alcanza su mayor tamaño cuando todo su hidrógeno central se ha convertido en helio. Si sigue brillando, la temperatura del núcleo debe subir lo suficiente como para producir la fusión de los núcleos de helio. Durante este proceso es probable que la estrella se haga mucho más pequeña y, por tanto, más densa.
Resultado de imagen para estrellas
Cuando ha gastado todas las posibles fuentes de energía nuclear, se contrae de nuevo y se convierte en una enana blanca. Esta etapa final puede estar marcada por explosiones conocidas como "novas". Cuando una estrella se libera de su cubierta exterior explotando como nova o superno-va, devuelve al medio interestelar elementos más pesados que el hidrógeno que ha sintetizado en su interior.
Las generaciones futuras de estrellas formadas a partir de este material comenzarán su vida con un surtido más rico de elementos pesados que las anteriores generaciones. Las estrellas que se despojan de sus capas exteriores de una forma no explosiva se convierten en nebulosas planetarias, estrellas viejas rodeadas por esferas de gas que irradian en una gama múltiple de longitudes de onda.



Las Galaxias del Universo

GalaxiaLas galaxias del Universo son acumulaciones enormes de estrellas, gases y polvo.
los cuerpos que forman parte de una galaxia se mueven a causa de la atracción entre ellos debida al efecto de la gravedad, lo que Newton definió como gravitación universal. En general hay, además, un movimiento mucho más amplio que hace que todo junto gire alrededor del centro.

Tamaños y formas de las galaxias

Hay galaxias enormes como Andrómeda, o pequeñas como su vecina  Las hay en forma de globo, de lente, planas, elípticas, espirales (como la nuestra) o formas irregulares. Las galaxias se agrupan formando "cúmulos de galaxias".
La galaxia grande más cercana es Andrómeda.
Se puede observar a simple vista y parece una mancha luminosa de aspecto brumoso. Los astrónomos árabes ya la habían observado. Actualmente se la conoce con la denominación M31. Está a unos 2.200.000 años luz de nosotros. Es el doble de grande que la Vía Láctea.

Las galaxias tienen un origen y una evolución

La galaxia SXDF-NB1006-2 podría dar indicios sobre la formación del Universo. | Foto: Omicrono
 primeras galaxias se empezaron a formar unos 1.000 millones de años después del Big-Bang. Las estrellas que las forman también tienen un nacimiento, una evolución y una muerte.
 se formó por acumulación de materiales que provenían de estrellas anteriores, muertas.
Muchos núcleos de galaxias emiten una fuerte radiación, cosa que indica la probable presencia de un agujero negro.

Los movimientos de las galaxias provocan, a veces, choques violentos. Pero, en general, las galaxias se alejan las unas de las otras, como puntos dibujados sobre la superficie de un globo que se infla


Los Planetas

Sistema solarLos planetas son astros que giran alrededor de una estrella, el Sol. No tienen luz propia, sino que reflejan la luz solar.
Nunca están quietos; al contrario, tienen diversos movimientos. Los más importantes son dos: el de rotación y el de traslación.

Por el de rotación, giran sobre sí mismos alrededor de su propio eje, es decir, rotan. Esto determina la duración del día de cada planeta.
Por el movimiento de traslación, estos astros describen órbitas alrededor del Sol. Cada órbita es el año del planeta, y cada uno tarda un tiempo diferente en completar esa vuelta. Cuanto más lejos del Sol, más largo es su año. Giran casi en el mismo plano, excepto Plutón*, que tiene la órbita más inclinada, excéntrica y alargada.


Los planetas tienen forma casi esférica, como una pelota un poco aplanada por los polos.
Los materiales compactos están en el núcleo, más densos cuanto más al centro. Los gases, si los hay, forman una atmósfera sobre la superficie.

Mercurio, Venus, la Tierra y Marte son mundos pequeños y rocosos, con densidad alta. Tienen rotación lenta, pocas lunas (o ninguna) y forma bastante redonda. En cambio, Júpiter, Saturno, Urano y Neptuno, los gigantes gaseosos, son enormes y ligeros, hechos de hielo y gases. Giran deprisa, tienen muchos satélites, más abultamiento ecuatorial y anillos.


Su formación se inició hace unos 4.600 millones de años, al mismo tiempo que el Sol.
En general, los materiales ligeros que no se quedaron atrapados en el Sol se alejaron de él más que los pesados. En la nube de gas y polvo original, que giraba formando espirales, había zonas más densas en las que más tarde se formarían los planetas.
Dibujo del Sistema Solar
La gravedad y las colisiones llevaron más materia a estas zonas y el movimiento rotatorio las redondeó. Después, los materiales y las fuerzas de cada planeta se fueron reajustando, y todavía lo hacen. Los planetas y todo el Sistema Solar continúan cambiando de aspecto. Sin prisa, pero sin pausa.

universo

¿Qué es el Universo? El  Universo  es todo, sin excepciones. Materia, energía, espacio y tiempo, todo lo que existe forma parte del Unive...